
Transform ratings from real raters into pseudo ratings
make.pseudo.Rd
Data from large-scale assessments often are rated by multiple raters. This function reduces the number of raters by the use of “pseudo raters”.
Usage
make.pseudo(datLong, idCol, varCol, codCol, valueCol, n.pseudo, item.groups = NULL,
randomize.order = TRUE, verbose = FALSE)
Arguments
- datLong
Data set in the longformat, i.e. one row per examinee-variable-rater combination.
- idCol
Name or column number of the person identifier (ID) variable.
- varCol
Name or column number of the variable identifier.
- codCol
Name or column number of the rater identifier variable.
- valueCol
Name or column number of the value variable.
- n.pseudo
How many pseudo rater should be used? (value must be lower than the number of real raters)
- item.groups
Optional: List of linked variables that could later be aggregated into items. If two raters make inconsistent judgments, it may be more favorable for aggregation if all variables belonging to an item are coded by the same rater per examinee. However, if a rater has not rated all the variables of the item, the ratings of other raters are used for the variables not rated by this rater.
- randomize.order
Logical: if TRUE, the selection of raters to pseudo raters is random.
- verbose
Logical: give information about number of persons, variables, raters?
Examples
data(rater)
oneRater <- make.pseudo (datLong=rater, idCol="id", varCol="variable", codCol="rater",
valueCol="value", n.pseudo=1, verbose=TRUE)
#> N.persons: 1287
#> N.vars: 7
#> N.coder: 4
#> coders per response: minimum 2, maximum 2
#> responses with multiple ratings: 2100 of 2100 (100 %)
twoRaters<- make.pseudo (datLong=rater, idCol="id", varCol="variable", codCol="rater",
valueCol="value", n.pseudo=2)
# with item groups, allowing that all variables belonging to an item are coded by the
# same rater (per examinee)
itemGroup<- list(first = c("V01", "V03"), second = c("V05", "V06", "V07"))
oneRater2<- make.pseudo (datLong=rater, idCol="id", varCol="variable", codCol="rater",
item.groups = itemGroup, valueCol="value", verbose=TRUE, n.pseudo=1)
#> N.persons: 1287
#> N.vars: 7
#> N.coder: 4
#> coders per response: minimum 2, maximum 2
#> responses with multiple ratings: 2100 of 2100 (100 %)
#> No common raters for some paired variables found. See attribute 'info' of the returned object for more information.
attr(oneRater2, "info")
#> variable.bundle examinee
#> first.P0181 V01, V03 P0181
#> first.P0338 V01, V03 P0338
#> first.P0347 V01, V03 P0347
#> first.P0351 V01, V03 P0351
#> first.P0399 V01, V03 P0399
#> first.P0508 V01, V03 P0508
#> first.P0553 V01, V03 P0553
#> first.P0652 V01, V03 P0652
#> first.P0716 V01, V03 P0716
#> first.P0734 V01, V03 P0734
#> first.P0972 V01, V03 P0972
#> first.P1089 V01, V03 P1089
#> first.P1134 V01, V03 P1134
#> first.P1233 V01, V03 P1233
#> first.P1313 V01, V03 P1313
#> first.P1323 V01, V03 P1323
#> second.P0041 V05, V06, V07 P0041
#> second.P0043 V05, V06, V07 P0043
#> second.P0045 V05, V06, V07 P0045
#> second.P0066 V05, V06, V07 P0066
#> second.P0072 V05, V06, V07 P0072
#> second.P0079 V05, V06, V07 P0079
#> second.P0166 V05, V06, V07 P0166
#> second.P0233 V05, V06, V07 P0233
#> second.P0235 V05, V06, V07 P0235
#> second.P0240 V05, V06, V07 P0240
#> second.P0242 V05, V06, V07 P0242
#> second.P0245 V05, V06, V07 P0245
#> second.P0429 V05, V06, V07 P0429
#> second.P0442 V05, V06, V07 P0442
#> second.P0443 V05, V06, V07 P0443
#> second.P0447 V05, V06, V07 P0447
#> second.P0449 V05, V06, V07 P0449
#> second.P0603 V05, V06, V07 P0603
#> second.P0610 V05, V06, V07 P0610
#> second.P0638 V05, V06, V07 P0638
#> second.P0692 V05, V06, V07 P0692
#> second.P0697 V05, V06, V07 P0697
#> second.P0757 V05, V06, V07 P0757
#> second.P0760 V05, V06, V07 P0760
#> second.P0907 V05, V06, V07 P0907
#> second.P0919 V05, V06, V07 P0919
#> second.P0924 V05, V06, V07 P0924
#> second.P0939 V05, V06, V07 P0939
#> second.P0948 V05, V06, V07 P0948
#> second.P0995 V05, V06, V07 P0995
#> second.P1110 V05, V06, V07 P1110
#> second.P1207 V05, V06, V07 P1207
#> second.P1229 V05, V06, V07 P1229
#> second.P1245 V05, V06, V07 P1245
#> second.P1252 V05, V06, V07 P1252
#> second.P1254 V05, V06, V07 P1254
#> second.P1283 V05, V06, V07 P1283
#> second.P1289 V05, V06, V07 P1289
#> second.P1331 V05, V06, V07 P1331
#> second.P1354 V05, V06, V07 P1354
#> second.P1368 V05, V06, V07 P1368
#> second.P1374 V05, V06, V07 P1374
#> second.P1386 V05, V06, V07 P1386
#> second.P1400 V05, V06, V07 P1400
#> second.P1428 V05, V06, V07 P1428
#> second.P1454 V05, V06, V07 P1454
#> second.P1472 V05, V06, V07 P1472
#> second.P1478 V05, V06, V07 P1478
#> second.P1484 V05, V06, V07 P1484
#> second.P1485 V05, V06, V07 P1485
#> second.P1487 V05, V06, V07 P1487
#> second.P1489 V05, V06, V07 P1489
#> second.P1496 V05, V06, V07 P1496
#> second.P1572 V05, V06, V07 P1572
#> second.P1628 V05, V06, V07 P1628
#> second.P1671 V05, V06, V07 P1671
#> second.P1676 V05, V06, V07 P1676
#> second.P1707 V05, V06, V07 P1707
#> second.P1724 V05, V06, V07 P1724
#> second.P1744 V05, V06, V07 P1744